The Systems Performance Parameters Matrix SV-7 may also be an input to this process, as the technology and procurement options available will need to meet the required performance parameters. SV-7 might also be used to include costs for each options, through cost / performance parameters, to feed into the Balance of Investment decision | | | | Hardware Element 2 | |--|-------------|------------------------------|---| | | | | S/W Element 2 / H/W Element 1 | | i i | | | Organic Training | | | | | Mean Time Between S/W Failures | | | | | Effectiveness | | | | | ytilidelievA . | | | | | Oberator Interaction Response Times (by type) | | | | | Automatic Processing Responses (by input type, # processed/unit time) | | | | | Architecture Data Capacity (e.g., throughput or # of input types) | | | | | S/W Element 1 / H/W Element 1 | | | | | Program Restart Time | | | | | Architecture data Transfer Rate | | | | | System Initialization Time | | The state of s | | | yfilidslisvA | | | | | Maintainability | | 7 | | | Hardware Element 1 | | | | | System Name | | Time (Target
Architecture
Time Period) | Time | Architecture
Time Period) | | | d and Objective) | e (Threshol | Репоглапсе Капд | | Z-VS Identify Options – Requirements ### MODAF Document Hierarchy **MODAF Glossary of Terms** ### system is put into service 5V-9, Technology Forecast, informs the IPT of new technology that may become available in the short, medium- and long-term. If new technology is due to become available during the lifetime of the acquisition process, this will need to be considered as an option. The technology forecast also helps the IPT to avoid technology and system options that would be obsolete by the time the | hysical Environment | 1 | release expected | Intel IA-64 becomes standard | |-----------------------|------------------------|------------------------------|--------------------------------------| | | | Next Red Hat Linux major | | | | | nbôusqe exbected | exbecţeq | | perating System | | Next MS Windows desktop | Next MS Windows server upgrade | | metaying System | alemina (alues | Mext MS Windows deskton | Mext MS Windows server upgrade | | | DBMS) available | | | | | MySQL (Open Source | | | | ALIGNIA COLUMNIA DADO | | | | | Jata Management | Oracle 9i available | | | | | dd∀ | cation Platform | | | | (2000) | implementation | commonplace | | | | | | | | available (for Windows | stable enough for full-scale | E-mail on wireless PDAs | | support Applications | Microsoft Office 2000 | Microsoft Office 2000 | Microsoft Office available for Linux | | anoitealignA though | | | Microsoft Office available for Linux | | | lqqA | cation Software | | | | (o-6 Months) | (srthroM S1-8) | | | | | | | | | | | | | | MAET TROHS | MID TERM | LONG TERM | ## Identify Options – Forecast Information MODAF Reference Guide MODAF-M10-009 # Systems / Technology Acquisition Workstream | Prerequisites | 1. Establish
Intended
Use | 2. Define
Architecture
Scope | 3. Develop
Data
Requirements | 4. Capture
Architecture | 5. Conduct
Analyses | 6. Document
Results | |--|---|--|---|--|---|--| | MODAF
Governance | | Inform
Central Reg. | Query of
Avail. Data
Sources | Provide Publish Extant Baseline Arch. to Data MODAR | | Publish Final
Arch. to
MODAR | | MODAF Users User training - MODAF principles | Workshop - Determine Architecture Usage Architectural Use Doc. | Workshop - Bound Architecture Scope Workshop - Determine Use Cases Plan of Time & Resources Architectural Scope Doc. | Workshop - Establish Data Needs Data Gathering Plan Tool Selection | Tool-specific Training Baseline Arch. Review Baseline Architecture | Analysis Review Initial Analysis Final Analysis | Finalised Arch. Review Finalised Architecture | | MODAF Resources MODAF Baseline MODAF Training Material | MODAF Tiger Teams MODAF Help Desk | MODAF Tiger Teams MODAF Help Desk Hybrid View Development | MODAF Tiger Teams MODAF Help Desk Certified Tool List Tool Advice | MODAF Tiger Teams MODAF Help Desk MODAF Taxonomy ERM / M3 | MODAF Tiger Teams MODAF Help Desk | MODAF Tiger Teams MODAF Help Desk | The approach to developing a MODAF-compliant architecture is shown in the diagram above. This shows how a MODAF user within any community in the MOD goes about establishing the intended use, scope and data requirements, developing the architecture, using this to conduct the required analyses and documenting the results. A more detailed description of this six-stage architecture development process is provided in the Overview of MODAF (MODAF-M09-002). ### **Demonstration -**Interoperability ### SV-6 | IER No. | Sender | Receiver | Content | Media | Info Char | Format | Security | Freq | Timeliness | Thru p | |---------|----------|----------|---------------|-------------|-----------|----------|----------|------|------------|--------| | 1 | JEMCC | cvic | TangetID | JTIOSISAT | Date | 7.3.94 | KOV-6 | 20/A | 30 | AUG. | | 2 | DDG-51 | JEMCC | Track Init. | DDS | Sensor | CEC data | EY-7 | 35/A | Leec | NIA | | 3 | JFMCC | E-2C | Engage Order | JTROS/SAT | Data | J 13.85 | KOV-8 | 26/A | 15 sec | NUA | | 4 | E-2C | JEMCC | Track Update | DDS | Sensor | CEC data | EY-2 | 20/A | 7mx | NIA | | 5 | CVIC | F/A-18 | Engage Order | JTIDS | Data | J 13.45 | KGV-4 | A/35 | 10ms | NUA. | | 6 | DDG-51 | CVIC | TargetLoc | DDS | Sensor | CEC data | EY-2 | N/A | 4 | NVA | | 7 | Parsiot | CVIC | Target Acq | ITIDS | Data | 2 4.56 | EGV-E | 36/A | 2 m is | NUA | | 8 | F/A-18CE | CVIC | Tanget Källed | JTIDS | Data | J 8.74 | KOV-8 | A/76 | 2 m is | NA | | 9 | E-2C | CVIC | CAP Pork | JTIDS | Data | J 10.74 | EGV-E | N/A | 35 : ** | NUA | | 1.0 | Patriot | AWACS | TargetLoc | JT IO SISAT | Date | J 12.101 | KOV-8 | N/A | 4800 | NUA | | 11 | CG-47 | CVIC | TargetLoc | DDS | Sensor | 7 12 101 | EY-7 | N/A | 2 | NIA | | 12 | CG 47 | DDC-01 | TargetID | DDS | Seasor | CEC date | EY-7 | 36/A | 1 | NA | | 1.3 | DDG-51 | CG-47 | Posit Info | DDS | Sensor | CEC data | EY-2 | 20/A | 500 ms | NIA | | 14 | CG-47 | AWACS | Cae Orders | JTIDS | Date | 17.99 | EOV-E | N/A | 2 m is | NUA. | | 15 | CG-47 | SHARPS | Cse Orders | JTIDS | Data | 17.99 | KOV-8 | 20/A | 2 m is | NUA | | 1.6 | Parriet | JEMCC | TargetLoc | JIMSISAI | Data | J 12.101 | KOV-8 | 20/A | 4 m is | NIA | | 17 | Hawk | JFMCC | TargetLoc | JT 60 S/SAT | Data | J 12.101 | KOV-8 | 20/A | 4 min | NUA | | 1.0 | E-2C | F/A-10EF | Cze Ordera | JTIDS | Data | FDL | EGV-E | N/A | 30 : : : | N/A | | 1.9 | F/A-18EF | CG-47 | TargetID | JTIDS | Data | 7.3.90 | EOV-E | 19/A | 30 : = = | N/A | | 2.0 | DDG-81 | DDG-51 | Tarretto | STIDE | Date | 7.3.90 | KOV-E | 30/A | 30 cmc | NIA. | OV-2 Operational Node Connectivity Description and SV-6 Systems Data Exchange Matrix shows how the system will meet the interoperability requirements, to provide an integrated capability # OV-1c | Attribute | Measure | Value | | | | | | |-----------------|-----------------|-----------|-----------|-----------|------------|--|--| | | | As - Is | Epoch 1 | Epoch 2 | Target | | | | Operational | Rate of | 20 km/day | 40 km/day | 60 km/day | 80 km/day | | | | Tempo | Advance for | _ | | - | - | | | | • | an Armoured | | | | | | | | | Brigade | | | | | | | | | against light | | | | | | | | | resistance | | | | | | | | Synchronisation | Simultaneous | 30 rounds | 40 rounds | 60 rounds | 100 rounds | | | | of Effects | rounds on | | | | | | | | | impact | | | | | | | | | delivered by | | | | | | | | | an Arty Bty | | | | | | | | Sortie Rate | Period to re- | 4 hours | 3 hours | 2 hours | 1 hours | | | | | fuel and re- | | | | | | | | | arm an aircraft | l | | | | | | ### **Demonstration** -Performance | | Performance Range (Threshold and Objecti
Measures | | | |--|--|-------|---| | | Architecture
Time Period) | Times | Time, (Target
Architecture
Time Period) | | System Name | | | | | Narthware Element 1 | | | | | Mantanability | | | | | Availability | | | | | System Initialization Time | | | | | Architecture data Transfer Rate | | | | | Program Restart Time | | | | | SW Element 1 / ISW Element 1 | | | | | Architecture Data Capacity (e.g., ffroughput or # of input
types) | | | | | Automatic Processing Responses (by input type, #
processed/unit time) | | | | | Operator Interaction Response Times (by type) | | | | | Availability | | | | | [:fectiveness | 10 | | | | Mean Time Between SW Faltures | | | | | Organic Training | | | | | SW Element 2 / KW Element 1 | | | | | Hardware Element 2 | | | | OV-1c Operational Performance Parameters and SV-7 System Performance Parameters Matrix show the required operational and system performance to be delivered by the solution ### **Demonstration - IERs** # OV-3 | Needline
ID | From | То | Content | Medium | | | | | |----------------|----------------|----------------|---------------------------|-----------|--|--|--|--| | 1 | PJHQ | BDE HQ | BDE TASKING ORDER | SAT COMM | | | | | | 2 | BDE HQ | UN MONITORS | UN MONITORS TASKING ORDER | BOWMAN | | | | | | 3 | BDE HQ | GROUND STATION | ISTAR TASKING ORDER | BOWMAN | | | | | | 4 | GROUND STATION | KESTREL | KESTREL TASK ORDER | UHF RX/TX | | | | | | 5 | KESTREL | GROUND STATION | TACTICAL ISTAR INFO | UHF RX/TX | | | | | | 6 | GROUND STATION | BDE HQ | TACTICAL ISTAR INFO | UHF RX/TX | | | | | | 7 | KESTREL | UN MONITORS | TACTICAL ISTAR INFO | BOWMAN | | | | | | 8 | UN MONITORS | BDE HQ | UPDATES AND REPORTS | BOWMAN | | | | | | 9 | BDE HO | PJHO | THEATRE UPDATE | SAT COMM | | | | | # TV-2 | TRM | STANDARDS FORECASTS | | | | | | |--|---|---|---|--|--|--| | CATEGORY | SHORT TERM | M ID TERM | LONGTERM | | | | | | (1 year) | (3 years) | (5 years) | | | | | | Applic | ation Platform | | | | | | Data Interchange
Document Interchange | Security Marking DTD – in
CAPCO coordination (proposed
IC standard) | | | | | | | Mapping | Geography DTD 2.0 – accepted
by GIS Consortium | Commercial products that
use the standard become
available | | | | | | | Geospatial XSD – in
coordination Open GIS | | Geospatial XSD – accepted by
Open GIS | | | | | Communications
Electronic Mail | | IETF RFC2060 Internet
Mail Access Protocol
(IMAP) – accepted,
replaces de facto standard | | | | | | W orld W ide Web
Services | IETF - Common Gateway
Interface (CGI) 1.2 - becomes
proposed standard | | IETF -Common Gateway Interface
(CGI) 1.2 - accepted, replaces CGI
1.1, the de fac to standard | | | | | | | | IETF - RFC 2818 HTTP Over TLS -
accepted, replaces RFC 2616 | | | | | Communications
Transport Services | | IETF -W ireless Extensions
to TLS - becomes
proposed standard | | | | | | | | IETF - RFC 2002 IP
Mobility Support - accepted | IETF -IPv4 Mobile IP Protocol -
becomes propose standard | | | | | Security | | | IETF - RFC 2246 The Transport
Layer Security (TLS) Protocol
Version 1.0 – accepted; replaces | | | | ### **Technology Insertion** | JTA Service | | 575 | | | |--------------------------|---|---|--|--| | | SHORT TERM
(S-6 Months) | MID TERM
(6-12 Months) | LONG-TERM | | | ALCOHOLOGICA CONTRACTOR | | ication Software | Control of the second second second second | | | Support Applications | Microsoft Diffice 2000
available (for Windows
2000) | Microsoft Office 2000
stable erough for full-scale
engineentation | Microsoft Office available for Linux
E-mail on electron PDAs
commonglace | Desktops may nee
upgrade in the lon | | | | Incation Platform | | term to take advan | | Data Management | Oracle (il available
MySGL (Open Source
OBMS) available | | | of new processors | | Operating System | | Next MS Vividous desiring
upgrade expected
Next Red Hat Circa major
release expected | Neur MS Windows server upgrade
expected | | | Physical Environment | | | Intel IA-64 becomes standard
processor for desktops
Initial use of quantum computing
suchnologies | | | | Exter | mal Environment | | | | User Interface | N-11.0 S.2027999 8 7 8 9 9 9 9 9 | Thir screen CRT monitors
for PC desktops become
price competitive | This screen LED monitors become
price competitive for desklops.
Conventional CRT technology
monitors for desklops become
stoolete. | | | Perustent Storage | 5G PCMCIA type 2 cand
available | | Disk storage capacity doubles again | | | Communications feetworks | | Cable modern service
evaluable for most
felecommuting staff | Filter optic connections available for
most telecommuting staff | | OV-3 Operational Information Exchange Matrix and SV-1 Systems Interface Description shows the Information Exchange Requirements (IERs), which should be included in the contract, to ensure integration, and how these are being met at a physical connectivity level Once the system is in the In-Service Stage, the technology evolution and evolving standards may drive obsolescence of system elements. The TLMP will be updated using inputs from the SV-9 and TV-2 to reflect this changing technology landscape, and upgrades, improvements or replacement initiated as needed